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A: Math. Gen., Vol. 9, No. 4. 1976. Printed in Great Britain. @ 1976 
3. mys: 

J S Dowker and Raymond Critchley 
Department of Theoretical Physics, The University, Manchester M13 QPL, UK 

Received 5 November 1975 

M e t  The Casimir effect is discussed and calculated using covariant methods. Ford’s 
results on vacuum energy in curved space are considered and criticized from the point of 
view of non-covariance. The relevance of the ‘conformal anomaly’ of Fulling and Davies is 
noted. 

TheCasieffect (Casimir 1948, Boyer 1970) is well known. Most calculations of the 
vacuumenergy density take a non-covariant form in that some sort of frequency cut-off 
isemployed at an intermediate state. The neatest such derivation seems to be that of 
Fierz (1960). It has indeed been implied (DeWitt 1975, p 304) that covariance and 
covariant arguments will not give the Casimir energy (see the footnote in DeWitt, 
1975). The explanation, of course, is not that covariance arguments are wrong but that 
t k y  are incorrectly applied. 

Ford (1975) has discussed quantum vacuum energy in a curved space background. 
Hisresult for the De Sitter universe differs from that calculated by ourselves (Dowker 
and critchley, 1976) and we wish to consider this fact in the present work. Firstly we 
mnsider the Casirnjr effect in flat space and give a covariant derivation. Then we turn to 
“d spaces. 

2 The C a s i i  effect in flat space 

lk. original Casimir effect concerned an electromagnetic field confined between 
parailel-plate conductors. We consider the same geometry but a massless scalar field, 
hkeFord (1975) and Dewin (1975). The boundary conditions are either periodic 
“esorthat 4 vanishes on the plates. 

we can write the vacuum energy-momentum tensor as the coincidence limit 

+5g,,,(V,VP +VP.VP’) -qt(R~~,+g~,RP:,)+i45Rg,v’lDAL(x, x ’ )  (1) 

*e D ~ ( X ,  x ’ )  is the Feynman Green function for the particular ”ifold, J% and 
% anditions we are interested in. For flat space the geodesic parallel prop- 
@‘$ &+ is just q&3 :, and RWy is zero. 
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n e  parameter ,$ in (1) is included for generality. If it is zero, then (1) gives the 
vacuum average of the canonid tensor, While if f = %  we get that of the improved 
tensor. For periodic boundary conditions these two cases give the same answer. 

n e  improved tensor is automatically traceless in virtue of the equations of 
p*v, + &)+ = 0 for the + field and SO we would use this as the best analogue of the 
electromagnetic case (DeWitt 1975). 

For the general theory of the Casimir effect we are by no means restricted to the 
geometry of parailel plates. However it will be as well to consider t& 

order to compare with known results. 
n e  Green function for periodic conditions is 

m 
D d X ,  x’) = c &(a,(x, X Y 7  X,X)EL 

n=-a  

where DF is the usual massless Feynman Green function, 

and an is given by 

(+z(x, x’) = ( t  - tr12 - (r - rh)2 

with 

x = 0, r ) ,  x r  = ( t ’ ,  d )  rk = (d, y’, z’+ nL). 

L is the distance between the plates and also stands for the manifold itself. 
For (2) it is clear that V,,D, = -V,D&, and then from (1) we easily find for any& 

V,,,b)) = i  lim V , V A  
x’+x 

using the equation of motion and the special conditions for flat space-time. 
Then 

(T,,) = i I“ (DZ(~,)V,O~,V,U~,+O~((+~)V,~,~~~,) (3) 
x-)x n 

with 

D)L= dD,/du2. 

we now try to effect the coincidence limit in (3). It is obvious that the n=Otem 
gives the infinite Minkowski result and hence the Casimir renormalization cOnsiSts here 
simply of dropping this term. Use of the coincidence limits 

gives for the remainder of the sum, 
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~ p a r f  from a factor of 24, which can be attributed to the use of periodic boundary 

calculation is transparently invariant and is, of course, quite equivalent to the 
d o n e .  The eigenvalue sum has been replaced by an image one. There is also no 
peedforany formal regularization since the infinite space contribution is readily picked 

However, we could have used, say, dimensional regularization methods to obtain 
the me result and this shows that covariant regularization methods are perfectly 
w@]e. This is not surprising. 
ne place where the usual covariance arguments go wrong is in the first step. 

&dance does not, in general, require that (Tpu) be proportional to the Minkowski 
metric7w ”’his is true only if the symmetry group in the large of the manifold A is the 
pimmb group. Any modification of the topological properties of iniinite flat space- 
b e  will, in general, destroy global Poincart invariance. Of course it will still exist as a 
local invariance (the metric is still qMu) but this is not enough. 

NI that this is saying is the very obvious fact that the structure of (T’J will be 
determined by the global geometry of A, and by the dynamics as well, naturally. A 
mmiance argument along these lines is given by DeWitt (1975, p 306) for the present 
hation. 

Onamore technical level if we had divided space into rectangular solids, rather than 
dah, the answer would have been 

the value (4) is half Casimir’s as expected (see DeWitt 1975). 

Not surprisingly we need Ewald lattice sums. A case which can be done ‘exactly’ is 
I,=@, L2 = L3 = L. Then 

( T ~ ~ ) ~ =  -(2.rr)-z~-4 1’ (n:+n:)-2= - 4 ~ - ~ p ( 2 ) ,  
{nz ,nd  

&re @(2) is Catalan’s constant. 
k s e  results are just special cases of the more general situation where A is a 

bom0geneou.s space of infinite Minkowski space, 3. More precisely, if we consider 
periodicity in the time direction as unphysical we could take the spatial section, (3)A, of 
1 to be one of the flat-space homogeneous forms obtained from the spatial sections, 

of infinite Minkowski space by identifying points equivalent under a finite 
SnbprOUp, r, of the Euclidean group E(3), i.e. (3)At = (3)3/r. These subgroups have 
hnclassified and pictured by Hantzsche and Wendt (1935). It is not expected that one 
w.oddleam anything more physically about the Casimir effect by studying these 
Merent static geometries. 

A different problem, but still only a technical one, is raised if one demands 
homogeneous boundary conditions instead of periodic ones. For the slab case, the Gfeen funaion for r$ (or ar$/ax) zero on the boundaries is given by the method of 
@geS Sommerfeld 1949) as 

0 ) j  

-for+=O i + for &$/ax = 0 
m, x ‘ )  = Dzr.(x, x’) F D ” L ( X ,  X Z ) ,  

%exR=(t9  X, y, -2) and D2L is given by (2) with L replaced by 2L. 
lae cOntribUtion to ( TMv)c from the first term of (6) is just the previous value, (41, 

aonaed 24, while that from the second term is zero, in agreement with the results 
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given by (1975). If it did not give zero it would produce a 2 dependenceh 

(TPV)C. 

again m e  method of images can be extended to rectangular cavities. We would 
expect that only the leading Green function would contribute to the improved (y)cto 
yield avalue of 24 smaller than (5).  This appears to disagree numerically with a 
Onley (1973). 

Other cavity shapes can be treated by quite elegant methods but this 
pursued here. 

not 

3. Casimir effect in cnrved space 

It has been suggested (DeWitt 1975) that if the spatial section of space-time is dosed 
(we have in mind E = 1 RoberthonT-Walker (RW) metrics) then there should be a 
Casimir term in the renormalized { Tpv). 

This expectation is based on the result of the previous section. There, space was 
compact and had the topology S' X R2 for the periodic slab and 

Ford (1975) has performed the analogue of Casbnk's calculation for the case of & 
Einstein universe and, thence, by conformal transformation, all spherical RW spaces. 
m e  calculation is a non-covariant one and it will be useful if we now give an invariant 
treatment along the lines of that in 0 2, and see how far we can reproduce Ford'sresultf. 

The massless Green function in an Einstein universe can be written in various ways 
but the most appropriate one for us is an expression in terms of a sum over classical 
paths on the spatial section, S3, of space-time (Dowker 1971). Thus we have 

for the periodicbox, 

The geodesic distance on S3 is denoted by s(q, 4'); q, q'c S3 and x = (t,  4). 
Expression (7) is a sum of elementary solutions of the wave equation and an 

invariant regularization will consist of dropping the n = 0 term. This is the odY term 
that is infinite at the coincidence limit, t = t', s = 0, and is the only term to survive 
radius, a, tends to infinity to give the Minkowski expression. 

using the results 
Equation (7), less the n = 0 term, is substituted into (1) which is easily evaluated 

1 1 1 
x"* V~V~O,,,  = -vi.viDren =-+gij 8a a (g+ 2n'ne) 

to give Ford's value, 

The neutrino result is similar. 
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 gain, &is is a completely invariant calculation and it is clear that any invariant 
4 of regularization would yield the same answer. There would therefore be no 
peebotherthan that of curiosity, to develop the dimensional regularization expressions 
haisme. ne next step of Ford’s argument involves a conformal transformation and it is here 
btpossible problems arise. To see why, consider De Sitter space SA which can be 
mhdfioxn the Eptein universe by a conformal transformation. In this case it is just 

work in S,  from the beginning. We can then compare answers. In fact there is 
non& to perform any calculations. S i  possesses a ten parameter global group of 

the De Sitter group, which contracts fairly nicely to the Poincark group. 
arguments thus parallel those in infinite Minkowski space and we can write 

(Tpu)%cv7 ( T,v)ca g,, 

which, together with the traceless condition of (TJ, seem to rule out any non-zero 
~ ~ u m  energy. Whence, then, comes the Casimir term calculated by Ford? 
Firstly, it is obvious that Ford’s calculation must destroy at least global De Sitter 

invariance at some point. (This may not be unwelcome). 
As is well known, under the conformal rescaling, g”” +fig" = g,”, the Green 

fnactiaa becomes, 

(9) 
1/2 I 

DF(X7 x’) + 6 F ( &  x’) =fl”’(X)fl (x )&(& XI), 

ad the energy-momentum tensor changes as (Parker 1973) 

Itisequation (10) that Ford effectively uses to obtain (f’,,) in the conformally Einstein 
RWmetric, &,, from that, (T’,,), in the Einstein one, g,,,. In this case the conformal 
factor a-”’ is the radius function, R, and if we transform ?; back to co-moving RW 
mordinates we find - 

‘f’w = f12 Too, T.. Y =aT.. V’ (1 1) 
Tpy is the energy-momentum tensor in an Einstein universe of unit spatial 

radius. 
h d 7 s  result follows if we take the vacuum average of (lo), or (11), considered as 

operator equations, and use (8) for the average on the right-hand side. Thus, e.g., 

‘Ihis “dusion is not covariant. In order to see why we restate the calculation as 

and (T’,,) are calculated, using (11, from the corresponding f i ~  and 
47fhenwe will certainly find that they are related by (lo), 

follows. 
FomaliY, if 
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ph&u, it is easy to see that for De Sitter space the renormalized Green fundoband 
hence the renormalized ( fpy)c will not be invariant under the De Sitter goup. a ,we 
believe, is the reson for the difference between Ford's result and the invariant, ~ 

one. We might say, in this case, that the operations of renormalization and 
s&g do not commute. 

In the general case therefore it d be necessary to use a generally covariant method 
of regularization. This agrees with the conclusions of Fulling and Davies (1976), in two 
h e m i o n s  who advocate the use of covariant point splitting. Also Streemwib (1975) 
has performed what looks like a respectably covariant calculation of the vacuum energ), 
in RW spaces. 

4. Discussion and condusion 

It is not clear to us yet where the possible non-invariance of the va" 
conformal scalings enters the picture. According to Fulling and Davies (19yj), 
apparently the conformal properties enjoyed by the classical theory are not carried 
through into the quantum version-this is the so-called 'conformal anomaly'. 'lkh 
also been noticed by Fronsdal (1975) in anti-De Sitter space. However, against this 
must be set the theory of Chernikov and Tagirov (1968) who fix a unique vacuum in De 
Sitter space precisely by requiring it to be conformally invariant and it is easily checked 
that equation (9) gives, with (7), that Feynman Green function corresponding to just 
€his vacuum. There seems to be a puzzle here. Another property that must k 
incorporated into the discussion is that in De Sitter space it does not seem possible to 
define a global quantum Hamiltonian (Nachtmann 1967). This is because complete De 
Sitter invariance implies the existence of a symmetry transformation in the component 
of the identity of the De Sitter group that anticommutes with the generator of local 
translations. 

wrong. 

given in 8 2 has already been used by Brown and Maclay (1969). 

For this reason we do not wish to imply that Ford's analysis and results are physically 

Finally, we have discovered that the image method of deriving the CaSimireneW 
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